Hammerstein System Identification by a Semi-Parametric Method

نویسنده

  • Grzegorz Mzyk
چکیده

A semi-parametric algorithm for identification of Hammerstein systems in the presence of correlated noise is proposed. The procedure is based on the non-parametric kernel regression estimator and the standard least squares. The advantages of the method in comparison with the standard non-parametric approach are discussed. Limit properties of the proposed estimator are studied, and the simulation results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hammerstein system identification by non-parametric instrumental variables

A mixed, parametric–non-parametric routine for Hammerstein system identification is presented. Parameters of a non-linear characteristic and of ARMA linear dynamical part of Hammerstein system are estimated by least squares and instrumental variables assuming poor a priori knowledge about the random input and random noise. Both subsystems are identified separately, thanks to the fact that the u...

متن کامل

An affine projection-based algorithm for identification of nonlinear Hammerstein systems

There are parametric and non-parametric methods for adaptive Hammerstein system identification. The most commonly used method is the non-parametric. In reality, the linear subsystem of a Hammerstein system is not of finite impulse response and nonparametric adaptive algorithms require large matrices and therefore increase computational complexity. The objectives of this paper are to identify th...

متن کامل

On the Identification of Hammerstein Systems Having Saturation-like Functions with Positive Slopes

The aim of the given paper is the development of an approach for parametric identification of Hammerstein systems with piecewise linear nonlinearities, i.e., when the saturation-like function with unknown slopes is followed by a linear part with unknown parameters. It is shown here that by a simple input data rearrangement and by a following data partition the problem of identification of a non...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Identification of Hammerstein-Wiener Systems Including Backlash Input Nonlinearities

Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. Presently, the input nonlinearity is allowed to be a memory operator of backlash type and both input and output nonlinearities are polynomial and may be noninvertible. The linear subsystem may be parametric or not, continuousor discrete-time. A two-stage identification method is develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000